КАЗАХСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ ИМ. АЛЬ-ФАРАБИ Физико-технический факультет Кафедра физики твердого тела и нелинейной физики

УТВЕРЖДАЮ)
Декан факуль	тета
	Давлетов А. Е.
20. 06. 2019 г.	, ,

УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС ДИСЦИПЛИНЫ FKS3409, FKS4304, 8B426 - ФИЗИКА КОНДЕНСИРОВАННОГО СОСТОЯНИЯ

5В061100 – Физика и астрономия

Курс 4 Семестр 7 Кол-во кредитов – 3

Учебно-методический комплекс преподавателем Мигуновой А. А.	дисциплины	составлен	старшим
На основании рабочего учебного пл 5В061100 — Физика и астрономия	іана по специальн	ости	
Рассмотрен и рекомендован на засе от 17. 06. 2019 г., протокол №	дании кафедры	Иблаги са М	IC.
Заведующий кафедрой		. Ибраимов М	. K.
Рекомендован методическим бюро 19. 06. 2019 г., протокол № 11	факультета		
Председатель методбюро факульте	га	Габдуллин	на А. Т.

СИЛЛАБУС 7 семестр 2019-2020 уч. год

Академическая информация о курсе

Код	Название	Тип	Кол-во ч	насов	в не	еделю	Кол-во		ECTS
дисциплины	дисциплины		Лек	Пра	КТ	Лаб	кредито	ЭВ	
FKS3409,	Физика		1	1		1	3		
FKS4312	конденсирован								
	ного состояния								
Лектор	Мигунова Ана	стасия	Анатоль	евна	O	рис-часы		По ј	расписанию
e-mail	Anastassiya.m	igunova	a@gmail.c	com					
Телефон	7054433515		_		Ay	удитория			203
Ассистент 1	Михайлова Све	тлана Ј	Пеонидов	на	O	рис-часы		По ј	расписанию
e-mail	Svetlana.Mikhai	lova@k	<u>kaznu.kz,</u>						
	skysvetik91@m	ail.ru							
Телефон	7051968268				Ay	удитория			205
Ассистент 2	Диханбаев Кад	ыржан	Кенжееви	14	O	рис-часы		По ј	расписанию
e-mail	Kadyrzhan.dykh	anbaev	@kaznu.k	Z					
Телефон	7771254343				Ay	удитория			205
Ассистент 3	Толепов Жандо	с Каир	маганбет	ович	O	рис-часы		По ј	расписанию
e-mail	mr.tolepov@ma	il.ru							
Телефон	7077556111				Ay	удитория			109
Ассистент 4	Накысбеков Жа	сулан			O	рис-часы		По ј	расписанию
	Турсынкалиеви	Ч							
e-mail	Zhasulan.Nakys	bekov@	kaznu.kz	,					
	phantom_ss@m	ail.ru							
Телефон	7073794435	•		•	Ay	удитория		•	110

Академическая	Тип учебного курса – бакалавриат
презентация	Цель курса: сформировать у обучающихся базовые знания в области
курса	анализа атомарного, молекулярного, наноразмерного, поли- и
	монокристаллического, а также аморфного строения веществ, поведения
	проводящих, изолирующих и промежуточных материалов в различных
	полях – тепловых, электрических, магнитных, под воздействием
	деформирующих сил и различных видов излучений, с элементами
	кристаллографии, структурного и тензорного анализа, квантовой механики
	и классических методов математической физики
	В качестве практических занятий предлагаются лабораторные работы,
	семинарские и домашние задания по научным исследованиям,
	выполненным на Кафедре физики твердого тела и нелинейной физики,
	Национальной нанотехнологической лаборатории, Лаборатории
	инженерного профиля и в Институте ядерной физики. В курсе применяется
	проектно-ориентированный подход, когда задачи даются на всю группу, но
	зачастую каждый студент получает индивидуальный объем работы
	(личностно-ориентированный подход).
	Компетенции. В результате изучения дисциплины студент будет способен:
	1. Выполнять расчеты в программах Excel и Mathcad современных задач,
	связанных с определением параметров материалов – энергии связи,
	кристаллической структуры, концентрации примеси, ее распределения,
	энергетического состояния и поведения и др.

	T
	2. Использовать базовые теоретические знания при самостоятельной
	постановке задач
	3. Работать самостоятельно и в коллективе
	4. Проводить измерения на аналитическом оборудовании
	(спектрофотометры, рентгеновские дифрактометры, измерители
	электрофизических характеристик и др)
	5. Применять современные физические модели для обоснования
	собственных результатов измерений
	6. Работать с Интернет-ресурсами и литературой на английском языке
	7. Выделять тенденции развития материаловедческих наук
	8. Владеть методом сравнительной оценки характеристик материалов из
	теоретических расчетов, из эксперимента, справочных данных
	9. Работать со спектрами, дифрактограммами, электронограммами и
	диаграммами электронных, оптических и тепловых переходов
Пререквизиты	Молекулярная физика, Электричество и магнетизм, Оптика
Пострекви-	Выпускная квалификационная работа бакалавра
ЗИТЫ	
Информа-	Учебная литература:
ционные	1 Павлов П. В., Хохлов А. Ф. Физика твердого тела. – 2000. – 494 с.
ресурсы	2 Brewster H. D. Solid State Physics. – 2009. – 286 p.
	3 Зиненко В. И., Сорокин Б. П., Турчин П. П. Основы физики твердого
	тела. – 2001. – 333 c.
	4 Anderson J. C., Leaver K. D., Leevers P., Rawlings R. D. Materials Science
	for Engineers. – 2009. – 889 p.
	5 Ohring M. Engineering materials science. – 2009. – 850 p.
	6 Callister W. D. Fundamentals and Materials Science and Engineering/An Interactive.
	– 2001. – 1619 p.
	7 Калин Б. А. Физическое материаловедение. В 6 томах. – 2007
	8 Солнцев Ю. П., Пряхин Е. П., Войткун Ф. Материаловедение. – СПб.:
	Химиздат. – 2007. – 784 с.
Академическая	Правила академического поведения:
политика	Отсутствие и опоздание на занятия без предварительного предупреждения
курса в	преподавателя оцениваются в 0 баллов.
контексте	Обязательное соблюдение сроков выполнения и сдачи заданий (домашних
университетск	заданий, СРС, рубежных, контрольных, лабораторных, проектных и др.).
их ценностей	За консультациями по выполнению самостоятельных работ (СРС), их
	сдачей и защитой, а также за дополнительной информацией по
	пройденному материалу и всеми другими возникающими вопросами по
	читаемому курсу обращайтесь к преподавателю в период его офис-часов.
	Академические ценности: академическая честность, самостоятельное
	выполнение всех заданий, недопустимость плагиата, подлога,
	использования шпаргалок, списывания на всех этапах контроля знаний,
-	обмана преподавателя и неуважительного отношения к нему
Политика	Критериальное оценивание: оценивание результатов обучения в
оценивания и	соотнесенности с дескрипторами (проверка сформированности
аттестации	компетенций на рубежных контролях и экзамене).
	Суммативное оценивание:
	Отлично: (95-100)% = А (90-94)% = А-
	Хорошо: $(85-89)\% = B+$ $(80-84)\% = B$ $(75-79)\% = B (70-74)\% = C+$
	Удовлетворительно: $(65-69)\% = C$, $(60-64)\% = C-$, $(55-59)\% = D+$,
	(50-54)% = D
	(25-49)%=FX (неудовлетворительно с возможностью пересдачи на платной

основе экзамена без повторного обучения по дисциплине)
(0-24)% = F (неудовлетворительно)

Календарь реализации содержания учебного курса:

He		Кол-	Макси
-	Ш	во	-маль-
де-	Название темы	ча-	ный
ЛЯ		сов	балл
	Модуль 1 - Строение материалов		
1	Лекция 1. Виды сил связи атомов в молекулах и кристаллических	1	
	решетках. Внутренняя структура твердых тел. Понятие		
	электроотрицательности и потенциала взаимодействия. Ионная,		
	ковалентная, металлическая, Ван-дер-Ваальсова, водородная связи		
	Практическое занятие 1. Расчет сил взаимодействия для	1	10
	различных видов связи в реальных материалах		
	Лабораторная работа. Вводный инструктаж. Ознакомление с	1	
	техникой безопасности		
2	Лекция 2. Элементы статистической физики. Невырожденные и	1	
	вырожденные коллективы. Статистика Максвелла-Больцмана.		
	Распределения квантовых состояний структурных частиц по Ферми-		
	Дираку и Бозе-Эйнштейну		
	Практическое занятие 2. Решение задач: Критерий вырождения.	1	10
	Статистика газовых молекул, электронов в металлах и		
	полупроводниках при разных температурах		
	Лабораторная работа 1. Определение параметров элементарной	2	5
	ячейки кристаллов кубических сингоний по дифрактограммам		
3	Лекция 3. Зонная теория твердых тел. Энергетический спектр	1	
	кристаллов в пространстве волнового вектора. Уравнение		
	Шредингера для кристалла, функции Блоха. Происхождение зон		
	Бриллюэна. Понятие эффективной массы		
	Практическое занятие 3. Решение задач: Контактные явления.	1	10
	Расчет работы выхода, контактной разности потенциалов, ширины		
	области пространственного заряда в полупроводниках		
	Лабораторная работа 1. Определение параметров элементарной	2	5
	ячейки кристаллов кубических сингоний по дифрактограммам		
	СРСП. Сдача задания 1: Расчет индивидуальных заданий в	1	20
	программе Excel по темам 1 и 3		
4	Лекция 4. Элементы кристаллографии. Обратное пространство.	1	
	Построение сферы Эвальда. Условия Лауэ. Элементарные ячейки		
	Бравэ. Ячейка Вигнера-Зейтца. Рентгеноструктурный анализ.		
	Формула Вульфа-Брэггов		
	Практическое занятие 4. Расчет параметров кристаллических ячеек	1	20
	материалов кубической сингонии. Определение размеров		
	кристаллитов. Формула Шеррера		
	Лабораторная работа 2. Определение параметров элементарной	2	10
	ячейки кристаллов кубических сингоний по дифрактограммам		
5	Лекция 5. Электронография материалов. Расшифровка	1	
	электронограмм моно- и поликристаллических образцов.		
	Практическое занятие 5. Расчет электронограмм порошковых	1	15
	материалов и монокристаллов		
	· •		

	Лабораторная работа 2. Определение электрофизических	2	5
	параметров полупроводников методом Холла и Ван дер Пау	_	
	Рубежный контроль 1		100
6	Лекция 6. Дефекты в материалах. Собственные точечные тепловые	1	
	дефекты по Шоттки и по Френкелю. Примеси. Твердые растворы		
	внедрения, замещения, вычитания. Уравнение диффузии. Законы		
	Фика. Профили концентрационного распределения примеси.		
	Двухстадийная диффузия в полупроводниках (загонка и разгонка),		
	параметры (температура, время, концентрация – конечный и		
	бесконечный источник)		
	Практическое занятие 6. Расчет глубины р-п перехода в пластине	1	10
	полупроводникового монокристалла по заданным параметрам		
	диффузии (прямая задача). Определение времени и температуры		
	диффузии для создания желаемых концентрационного профиля		
	примеси и ее глубины внедрения (обратная задача)		
	Лабораторная работа 2. Определение электрофизических	2	5
	параметров полупроводников методом Холла и Ван дер Пау		
	СРСП. Сдача задания 2: Расчет индивидуальных заданий в	1	10
	программах Excel и Mathcad: определение параметров		
	кристаллических решеток по данным рентгеновской и электронной		
	дифракции		
7	Лекция 7. Радиационные эффекты в твердых телах. Условия	1	
	облучения (тип, энергия и спектр бомбардирующих частиц,		
	плотность потока, продолжительность и температура облучения).		
	Каскады смещений. Теория Кинчина-Пиза. Ионная имплантация.		
	Практическое занятие 7. Расчет пробегов и профилей внедренной	1	5
	примеси		
	Лабораторная работа 2. Определение электрофизических	2	10
	параметров полупроводников методом Холла и Ван дер Пау		
	СРСП. Сдача задания 3: Ионное перемешивание. Особенности	1	10
	взаимодействия нейтронных пучков с материалами. Эффекты в		
	материалах, облученных электронами высоких энергий. Материалы		
	ядерных реакторов. Нормы радиационной безопасности. Эффект		
	каналирования. Радиационно-индуцированная сегрегация, распад		
	твердого раствора и фазовые превращения. Наработка изотопически		
	обогащенных мишеней в ускорителях. Понятие флюенса,		
	экспозиционной, поглощенной и эквивалентной доз. Эффекты		
	трансмутации (презентация)		
	Лекция 8. Аморфные материалы. Материалы с наноструктурой	1	
	Практическое занятие 8. Расчет структурных характеристик и	1	10
0	стоп-зоны фотонных кристаллов на основе синтетических опалов		
8	Лабораторная работа 3. Расчет ширины запрещенной зоны	2	5
	прямозонных и непрямозонных полупроводников по их спектрам		
	пропускания и отражения		
	Модуль 2 – Свойства материалов		
9	Лекция 9. Фазовые диаграммы (ФД) двухкомпонентных смесей.	1	
	Вариантность системы. Правило фаз Гиббса. Реакции		
	эвтектического и перитектического типа. ФД с химическими		
	соединениями		
	соединениями Практическое занятие 9. Расчет и построение фазовых диаграмм	1	10
	Практическое занятие 9. Расчет и построение фазовых диаграмм двухкомпонентных систем, содержащих эвтектики и эвтектоиды,	1	10

	O 1		
	синтектические превращения. Определение фазовых превращений		
	на индивидуально заданных сложных ФД	2	
	Лабораторная работа 3. Расчет ширины запрещенной зоны	2	5
	прямозонных и непрямозонных полупроводников по их спектрам		
	пропускания и отражения		
10	Лекция 10. Конструкционные материалы и их механические	1	
	свойства		
	Практическое занятие 10. Нахождение механических	1	10
	характеристик материалов по диаграммам деформации. Расчет		
	тензора напряжений. Расчет твердости сплавов и микротвердости		
	материалов по Виккерсу и Бринеллю		
	Лабораторная работа 3. Расчет ширины запрещенной зоны	2	10
	прямозонных и непрямозонных полупроводников по их спектрам		
	пропускания и отражения		
	СРСП. Сдача задания 4: Определение фазовых превращений на	1	10
	заданных сложных ФД (форма сдачи – письменное индивидуальное		
	задание)		
	Рубежный контроль 2		100
11	Лекция 11. Тепловые свойства материалов. Фононы. Нормальный	1	
	осциллятор. Статистика фононов. Модели теплоемкости Дюлонга-		
	Пти и Джоуля-Коппа, Эйнштейна, Дебая. Теплопроводность		
	Практическое занятие 11. Расчет энтальпии, средней	1	5
	теплоемкости, температуры Дебая		
	Лабораторная работа 4. Расчет фотовольтаических параметров	2	5
	солнечных элементов	_	-
	СРСП. Сдача задания 5: Сверхпластичность, ползучесть,	1	5
	упрочнение материалов. Модули упругости и их взаимосвязи.	1	J
	Характеристики сдвига. Наклёп. Характеристики изгиба.		
	Характеристики кручения. Тепловое расширение твердых тел		
	(презентация)		
12	Лекция 12. Электрические свойства материалов.	1	
	Электропроводность металлов и полупроводников. Подвижность		
	носителей заряда в полупроводниках. Температурные зависимости		
	подвижности и электропроводности. Явления в сильных		
	электрических полях. Туннельный эффект Зинера и эффект Ганна		
	Практическое занятие 12. Расчет электропроводности металлов,	1	10
	сравнение с табличными значениями. Расчет диода Ганна,	1	10
	холловских параметров эпитаксиальной пленки		
	Лабораторная работа 4. Расчет фотовольтаических параметров	2	5
	солнечных элементов	2	3
13	Лекция 13. Явление сверхпроводимости. Теория Бардена-Купера-	1	
13	Шриффера. Эффект Мейснера. Понятие фазового перехода.	1	
	Сверхпроводимость 1, 2 и 1,5 рода. Вихри Абрикосова Практическое занятие 13 . Расчет плотности тока в	1	10
	-	1	10
	сверхпроводниках, скачка теплоемкости в критической точке,		
	условий левитации, параметров джозефсоновских контактов	2	10
	Лабораторная работа 4. Расчет фотовольтаических параметров	2	10
	солнечных элементов	1	_
	СРСП. Сдача задания 6: Закон Видемана-Франца. Поляризация	1	5
	диэлектриков. Эффекты Джозефсона. ВТСП-керамики. СП провода.		
	СКВИД	-	
14	Лекция 14. Магнитные свойства материалов. Закон намагничивания	1	

Рэлея. Магнитный гистерезис. Ферро-, пара и диамагнетики Практическое занятие 14. Расчет размеров нанокристаллитов по магнитному гистерезису магнетика. Определение магнитной энергии магнетика Лабораторная работа 4. Расчет фотовольтаических параметров солнечных элементов СРСП. Сдача задания 7: Магнитотвердые и магнитомягкие	1 2	10
магнитному гистерезису магнетика. Определение магнитной энергии магнетика Лабораторная работа 4. Расчет фотовольтаических параметров солнечных элементов СРСП. Сдача задания 7: Магнитотвердые и магнитомягкие	2	
энергии магнетика Лабораторная работа 4. Расчет фотовольтаических параметров солнечных элементов СРСП. Сдача задания 7: Магнитотвердые и магнитомягкие	2	10
Лабораторная работа 4. Расчет фотовольтаических параметров солнечных элементов СРСП. Сдача задания 7: Магнитотвердые и магнитомягкие	2	10
солнечных элементов СРСП. Сдача задания 7: Магнитотвердые и магнитомягкие	2	10
солнечных элементов СРСП. Сдача задания 7: Магнитотвердые и магнитомягкие		
	1	5
материалы. Ферримагнетики и антиферромагнетики. Магнитный		
резонанс. Суперпарамагнетизм. Виды магнетосопротивления		
(презентация)		
15 Лекция 15. Взаимодействие света с веществом. Оптические явления	1	
в материалах. Виды поглощения в полупроводниках. Принцип		
работы солнечных элементов и твердотельных лазеров.		
Люминесценция		
Практическое занятие 15. Определение глубины скин-слоя в	1	20
металлах при облучении монохроматическим светом. Расчет		
параметров рубинового, Nd-YAG, Ti:Sa лазеров. Расчет оптических		
функций по спектрам отражения: фазы отраженной волны θ ,		
показателя преломления n и поглощения k , комплексной		
диэлектрической проницаемости ε, коэффициента поглощения α		
Рубежный контроль 3		100
Экзамен	2.	100

Лектор Мигунова А. А.

Заведующий кафедрой $\Phi TTuH\Phi$ Ибраимов М. К.

Председатель методического бюро факультета

оро факультета Габдуллина А. Т.